
 

 

 
Abstract- The assessment of dynamic cerebral autoregulation 
response using changes in arterial blood pressure (ABP) as a 
stimulus is increasingly used. Transcranial Doppler 
ultrasonography measurements of middle cerebral artery 
velocity (MCAv) are often used in conjunction with ABP 
measurements using photoplethysmography (e.g. Finapres) to 
assess the response of the autoregulation mechanism. Two 
linear models of dynamic cerebral autoregulation have been 
developed independently. The first is an ARX model using the 
least-squares algorithm to fit the ABP and MCAv signals. The 
second is a flow dependent feedback mechanism controlling the 
pressure gradient across the MCA. Both models have been 
found to reproduce qualitatively similar results to those 
recorded in both thigh cuff and lower body negative pressure 
experiments, whereas the first model has also been used to 
analyse MCAv simulated using Ursino’s physiological model. 
This paper assesses the ability of the two models to reproduce 
MCAv measurements from recordings of ABP from the same 
experiments. 
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I. INTRODUCTION 
 

Cerebral autoregulation, the active changes in arterial 
and arteriolar diameters, allows cerebral blood flow (CBF) 
to be maintained despite changes in cerebral perfusion 
pressure.  Both arterial blood pressure (ABP) and middle 
cerebral arterial flow velocity (MCAv) can be measured 
noninvasively using photoplethysmography (e.g. Finapres) 
and transcranial Doppler ultrasonography (TCD) 
respectively. Recent studies show that the mean MCAv 
variability is largely due to the spontaneous changes in ABP, 
providing the other physiological conditions are in a steady 
state, e.g. arterial pCO2 is constant [1], [2]. 

Many types of experiment have been developed to 
manipulate the ABP in order to assess dynamic 
autoregulation, such as the thigh cuff technique and carotid 
artery compression to create step changes in ABP together 
with controlled breathing, squat-standing and lower body 
negative pressure (LBNP) experiments that induce slow 
oscillatory variations in ABP [3]. Data from both the thigh 
cuff and LBNP techniques are used in this paper to 
investigate the variability in ABP and MCAv.  

Many different approaches have been adopted to 
establish a quantitative relationship between ABP and 
MCAv [4], [5]. In this paper, two different linear 

mathematical models of dynamic autoregulation are 
presented.  

 The first approach is ARX modeling.  The ARX model 
is constructed using the least-squares algorithm to fit MCAv 
data by the simultaneous ABP data. Besides collecting 
MCAv from TCD, MCAv is also simulated by a 
physiological model. The multi-compartmental 
physiological model developed by Ursino and his 
colleagues [6] is used to simulate a controllable cerebral 
circulation system, i.e. we can change the cerebral 
autoregulation by adjusting some parameters of the 
physiological model. This physiological model simulation 
showed a good correspondency with real MCAv  [7]. The 
step response of ARX models constructed using different 
ABP data are analyzed.  

The second modelling approach represents the 
autoregulation as a flow dependent feedback mechanism 
that is assumed to alter the pressure gradient along the MCA, 
modelled as a long rigid pipe. This pressure gradient, in turn, 
drives the flow through the MCA from which MCAv can be 
calculated. 

Both studies assume that MCAv is reasonably 
consistent with cerebral blood flow (CBF), despite the fact 
that there  may be a slight change in diameter of the middle 
cerebral arteries (MCA) caused by a change of intracranial 
pressure (ICP). 

 
 

II. METHODOLOGY 
   
A. Experimental measurements  

 
Two experimental procedures were carried out to assess 

dynamic autoregulation in the present study. ABP was 
monitored using a Finapres and MCAv was simultaneously 
recorded using TCD in both procedures. The sampling rate 
was 20Hz. Data was collected from three healthy volunteers 
having no history of vascular disease. Each experiment was 
repeated six times in each volunteer.  

The first procedure is the thigh cuff technique, which 
has been widely used and described in many studies.  The 
mean±SD duration of the 6×3 records analyzed was 85±14 
sec.  

The second set of experiments used the LBNP box 
currently being developed at Southampton General Hospital. 
A lower body negative pressure is varied sinusoidally to 
produce oscillatory variations in ABP with amplitude of 5-
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10% of the mean and a period of 12 sec. The mean±SD 
duration of the LBNP box experiments was 300±25 sec. 

 
B.  MCAv simulation 
 

The physiological model of cerebral hydrodynamics 
was proposed in a series of papers by Ursino and his 
colleagues [6], [7], [8]. We have implemented the model on 
a PC using the Matlab-Simulink software package. The 
ABP is the input to the model and the relative changes in 
simulated cerebral dynamics, e.g. ICP and MCAv can be 
observed in real-time.  Four ABP data sets recorded in each 
of above experiments were randomly selected to be the 
input of the physiological model.  

Some parameters significantly influencing cerebral 
autoregulation were set to simulate different regulatory 
grades, i.e. strong, average, slow and completed impaired 
autoregulation. Four MCAv responses were recorded for 
every ABP input.       

  
C.  Signal processing 

 
The ABP and MCAv signals were sampled at 20Hz and 

the beat-to-beat pulsatilities were removed using a seventh-
order elliptic low-pass filter.  The pass band frequency is 
0.5Hz and the stop band frequency is 0.6Hz with –40db 
attenuation. The ripple amplitude of the pass band is 
<0.01db. The zero-phase forward and reverse digital 
filtering technique is applied [9] in order to compensate for 
the phase shift introduced by the IIR filtering.  The data 
were down-sampled at 1 Hz and 20Hz to be applied to the 
ARX modeling and flow dependent  feedback model 
respectively.  

The ABP and MCAv in each data set were divided by 
their mean levels in order to compare the relative changes.  

 
D. Parameter estimation of the ARX model 
 

An ARX model, which is also called the Equation Error 
model, is given by 
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Here y and u are MCAv and input ABP of the system, 
respectively whereas e(t) is a white-noise term. 

 The parameter vector, which minimizes the sum of 
squared equation errors, 

 
 

is given by  
 

      (1c) 

E.  Flow dependent feedback model 
 

This approach assumes that the MCA is a long straight 
rigid tube and the flow is fully developed. Therefore the 
nondimesional linearised Navier-Stokes equations [10] 
reduces to 
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where v(r,t) is the axial velocity in the MCA, r is the radial 
position and t is time. The nondimensional parameter 

νγ 0
2 ta=  where a is the MCA radius, υ  is the kinetic 

viscosity and 10 =t  is a time constant. The pressure 
gradient is the sum of three components: 10 =∆P  
representing the baseline pressure gradient, iP∆  the 
component imposed by the experimental procedure and 

aP∆  the component produced by the autoregulation 
mechanism that is given by 
 

            
    (2b) 

 
with )( ττ −= tQQ represents the nondimensional volume 
flow rate at time τ−t  and 0Q  is its baseline value. The two 
constants λ  and τ  describe the rate of regulation and time 
delay of the autoregulation mechanism respectively. Note 
the nondimesional form has been chosen so that 
MCAv ),0( tv=  has a baseline value of 1 to allow easy 
comparison with experimental data. 

For each experiment 1024 data points were used, 
corresponding to 51.15s to allow fast Fourier transforms to 
be used efficiently. For the thigh cuff experiment the data 
was selected so that the cuff release occurred at t=10s. For 
the LBNP experiments the data set was taken from t=120s. 
The optimal values of model parameters that produced the 
least mean squared error for 5<t<30s in the thigh cuff 
experiments and 120<t<170.15 for LBNP, were then found 
for each experiment. Using these parameters the correlation 
coefficients over 5<t<30 (model 3A) and over all 1024 data 
points (model 3B) were calculated for the thigh cuff 
experiments. Only model 3B was used to analyse the LBNP 
experiments.   
 

III. RESULTS 
 

Table IA and IB presents correlation coefficients 
between model predicted MCAv from (1) and (2) and the 
original data. Parameters of models were estimated using 
the thigh cuff data.  The ARX model with na=0 and nb=6 
(hereinafter, “Model 1”), i.e. an FIR filter increases the 
correlation by about 30-80% depending on the level of the 
correlation of the original data. Model 1 is less data-
dependent than the ARX model with na=2 and nb=4 
(hereinafter, “Model 2”). Model 2 fits the original data 
better if the original data is poorly correlated, however, 
model 2 fails to fit the system when the correlation of the 
original data is high (Subject 1). The LBNP experiments 
recorded the data with longer duration and slower variation 
in both ABP and MCAv. The performance of Model 1is 
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closely related to the original data in these experiments 
(Table IB), whereas the performance of Model 2 here is 
similar to the thigh cuff experiments data set.  

The flow dependent feedback model correlates very 
well with all three subjects over the range 5<t<30 in the 
thigh cuff experiments with the release at t=10s (Table IA). 
However the correlation coefficient is reduced if the larger 
range 0<t<51.15 is used.  In the analysis of the LBNP box 
experiments the interval 120<t<171.15 was analysed as this 
lay in the middle of each recording. The correlation 
coefficients (Table IB) were lower than those obtained for 
the thigh cuff experiment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 1. Representative time series of changes in mean ABP (double solid 
line), MCAv (solid line) and simulated MCAvs using Model 1 (dotted line), 
Model 2 (dashed line) and Model 3 (dotted-dashed line). 

 
The physiological model simulates a noise-free and 

steady state cerebral circulation system, i.e. variations in 
MCAv is merely caused by changes in ABP.  Therefore, the 
model input (ABP) is more strongly correlated with the 
simulated MCAv. The linear correlation increases as the 
autoregulation decreases due to the fact that the arteriolar 
diameter is more passive to the changes in ABP when 
autoregulation is low (Table II). Model 1 and 2 have similar 
performances in fitting MCAv, however, Model 2 goes 
unstable if the system input and output are highly correlated 
(Subject 4) which causes the singularity of the input auto-
correlation matrix (the first part of (1c)).  

Fig 1 shows a typical result of three models in the thigh 
cuff fitting. The ARX model fits the MCAv using a 95-
second ABP data set and the performance in modelling the 
drop in flow velocity is poorer than Model 3A, which 
models a 25-second ABP data set. Step responses in Fig 2 
give a more manifest demonstration that Model 1 (FIR filter) 
is more sensitive to the abrupt changes in cerebral hydro-
dynamics than Model 2 (IIR filter).  Additionally, the peak 
of the Model 1 step responses using the thigh cuff data is 
1.98±0.22, whereas the peak using the LBNP data is only 
1.60±0.18. The step responses of other subjects are very 
similar to Fig 2.  

Fig 3 presents step responses using the MCAv 
simulation.  

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig 2. Step responses of the ARX models with SD bars using the thigh cuff 
(solid lines) and LBNP (dotted lines) data sets. The upper response curve is 
Model 1 and the lower curve is Model 2 in each set.  Data sets used are 
recorded from the same volunteer (Subject 3). 
 

TABLE IA 
MEAN±SD OF CORRELATION COEFFICIENT FOR ALL THIGH CUFF DATA 

Correlation Coefficient Subjects 
 ABP-MCAv MCAv-MCAv 

from Model 1* 
MCAv-MCAv 

from Model 2** 
1 0.64±0.10 0.77±0.09 0.58±0.21 
2 0.38±0.22 0.65±0.15 0.72±0.36 
3 0.40±0.35 0.66±0.22 0.75±0.33 

TABLE IA CONTINUED 
Subject Correlation Coefficient 

 MCAv-MCAv from 
Model 3A↑  

MCAv-MCAv from 
Model 3B↑↑  

1 0.89±0.12 0.74±0.05 
2 0.91±0.07 0.77±0.17 
3 0.93±0.07 0.78±0.12 

*  the ARX model with na=0 and nb=6 defined in (2) 
**  the ARX model with na=2 and nb=4  
↑  flow dependent feedback model  for 5<t<30 
↑↑  flow dependent feedback model for 1024 data points 
 

TABLE IB 
MEAN±SD OF CORRELATION COEFFICIENT FOR ALL LBNP DATA 

Correlation Coefficient Subjects 
 ABP-MCAv MCAv-MCAv 

from Model 1* 
MCAv-MCAv 

from Model 2** 
1 0.54±0.14 0.61±0.10 0.55±0.15 
2 0.20±0.21 0.45±0.24 0.49±0.24 
3 0.54±0.13 0.76±0.11 0.73±0.16 

TABLE IB CONTINUED 
Subject Correlation Coefficient 

 MCAv-MCAv from 
Model 3A↑  

MCAv-MCAv from 
Model 3B↑↑  

1 N/A 0.62±0.16 
2 N/A 0.56±0.17 
3 N/A 0.66±0.10 

*, **, ↑ , ↑↑  the same as TABLE IA 
 

IV. DISCUSSION 
 

The ARX modelling results (Table I and Fig 1) of thigh 
cuff and LBNP data are consistent with earlier studies [9]. 
The step responses of ARX model differentiate between 



 

 

cerebral hydrodynamic systems under different conditions 
of autoregulation (Fig 3).  

In addition, the ARX models obtained from different 
experiments contain similar information (Fig 1A and 1B), 
however, the former reflects the stronger responses.  The 
similarity of Fig 3A and Fig 3B suggests that the differences 
are not due to the differences of the frequency component 
between two kinds of data, i.e. both thigh cuff and LBNP 
data have included sufficient information about cerebral 
autoregulation and therefore both techniques can be used to 
assess autoregulatory capacity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3.  Step responses of the ARX models with SD bars using the 
physiological simulated MCAv with the thigh cuff (A) and LBNP (B) ABP 
data inputs. In each plot, the curves from the top to the bottom represent 
system responses with the strongest to the weakest autoregulation. 
 

In the longer LBNP experiments, changes in MCAv 
could be subjected to more changes in physiological 
conditions other than ABP, such as CO2 concentration or 
metabolic requirement, whereas the physiological 
simulation assumes those conditions are constant.  

The flow dependent feedback model reproduces the 
thigh cuff experiments very well for 5<t<30, namely the 
duration of the response to the thigh cuff release. The ability 
of the model to reproduce data over a longer time interval is 
reduced by changes in other physiological parameters that 
remain relatively constant over the duration of the thigh cuff 
experiments. This also explains why the correlation for the 
LBNP box experiments is not as high as in the thigh cuff 
experiments. In previous work [3] the LBNP box 

experimental results have been analysed differently. The 
frequency associated with the ABP oscillations due to the 
LBNP box were isolated in an attempt to remove the 
influence of the heart and breathing cycles. This approach 
may also reduce the influence of variations in other 
physiological conditions and facilitate easier modelling. 

The two models presented here have been developed 
independently and the intrinsic relationship between the two 
models has yet to be fully investigated. This will be part of 
our future study.  

 
TABLE II 

MEAN±SD OF CORRELATION COEFFICIENT FOR PHYSIOLGICAL SIMULATION DATA 
Subject Correlation Coefficient using Cuff Thigh Data 

 ABP-MCAv MCAv-MCAv 
from Model 1* 

MCAv-MCAv 
from Model 2** 

1 0.72±0.12 0.89±0.09 0.90±0.01 
2 0.82±0.06 0.93±0.06 0.86±0.09 
3 0.92±0.03 0.99±.0.00 0.98±0.01 
4 0.98±0.00 0.99±0.00 System unstable 

TABLE II CONTINUED 
Subject Correlation Coefficient using LBNP Data 

 ABP-MCAv MCAv-MCAv 
from Model 1* 

MCAv-MCAv 
from Model 2** 

1 0.78±0.07 0.94±0.05 0.93±0.05 
2 0.85±0.08 0.95±0.04 0.94±0.05 
3 0.91±0.12 0.97±0.04 0.98±0.02 
4 0.97±0.01 0.99±0.01 System unstable 
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